Background
The tumor microenvironment (TME) plays an essential role in supporting and promoting tumor growth and progression. An inflammatory stroma is a widespread hallmark of the prostate TME, and prostate tumors are known to co-evolve with their reactive stroma. Cancer-associated fibroblasts (CAFs) within the reactive stroma play a salient role in secreting cytokines that contribute to this inflammatory TME. Although a number of inflammatory mediators have been identified, a clear understanding of key factors initiating the formation of reactive stroma is lacking.
Conclusions
Our results provide compelling support for eHsp90α as a transducer of signaling events culminating in an inflammatory and reactive stroma, thereby conferring properties associated with prostate cancer progression.
Methods
We explored whether tumor secreted extracellular Hsp90 alpha (eHsp90α) may initiate a reactive stroma. Prostate stromal fibroblasts (PrSFs) were exposed to exogenous Hsp90α protein, or to conditioned medium (CM) from eHsp90α-expressing prostate cancer cells, and evaluated for signaling, motility, and expression of prototypic reactive markers. In tandem, ELISA assays were utilized to characterize Hsp90α-mediated secreted factors.
Results
We report that exposure of PrSFs to eHsp90 upregulates the transcription and protein secretion of IL-6 and IL-8, key inflammatory cytokines known to play a causative role in prostate cancer progression. Cytokine secretion was regulated in part via a MEK/ERK and NF-κB dependent pathway. Secreted eHsp90α also promoted the rapid and durable activation of the oncogenic inflammatory mediator signal transducer and activator of transcription (STAT3). Finally, eHsp90 induced the expression of MMP-3, a well-known mediator of fibrosis and the myofibroblast phenotype. Conclusions: Our results provide compelling support for eHsp90α as a transducer of signaling events culminating in an inflammatory and reactive stroma, thereby conferring properties associated with prostate cancer progression.
