Orcinol Glucoside Improves Senile Osteoporosis through Attenuating Oxidative Stress and Autophagy of Osteoclast via Activating Nrf2/Keap1 and mTOR Signaling Pathway

地衣酚葡萄糖苷通过激活 Nrf2/Keap1 和 mTOR 信号通路减轻氧化应激和破骨细胞自噬改善老年性骨质疏松症

阅读:6
作者:Wan Gong, Mengqin Liu, Qi Zhang, Quanlong Zhang, Yang Wang, Qiming Zhao, Lu Xiang, Chengjian Zheng, Qiaoyan Zhang, Luping Qin

Abstract

Oxidative stress and autophagy play essential roles in the development of senile osteoporosis which is characterized by disrupted osteoclastic bone resorption and osteoblastic bone formation. Orcinol glucoside (OG), a phenolic glycoside isolated from Curculigo orchioides Gaertn, possesses antiosteoporotic properties. This study examined the protective effects of OG on bone loss in SAMP6 mice and explored the underlying mechanisms. The osteoporotic SAMP6 mice were treated with OG oral administration. RAW264.7 cells were induced to differentiate into osteoclast by RANKL and H2O2 in vitro and received OG treatment. The results demonstrated that OG attenuated bone loss in SAMP6 mice and inhibited the formation and bone resorption activities of osteoclast and reduced levels of oxidative stress in bone tissue of SAMP6 mice and osteoclast. Furthermore, OG activated Nrf2/Keap1 signaling pathway and enhanced the phosphorylation of mTOR and p70S6K which are consequently suppressing autophagy. Of note, the effect of OG on Nrf2/Keap1 signaling was neutralized by the mTOR inhibitor rapamycin. Meanwhile, the inhibitory effect of OG on autophagy was reversed by the Nrf2 inhibitor ML385.Conclusively, OG attenuated bone loss by inhibiting formation, differentiation, and bone resorption activities of osteoclast. Regulation of Nrf2/Keap1 and mTOR signals is a possible mechanism by which OG suppressed oxidative and autophagy of osteoclasts. Thus, OG prevented senile osteoporosis through attenuating oxidative stress and autophagy of osteoclast via activating Nrf2/Keap1 and mTOR signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。