Region-specific regulation of voltage-gated intrinsic currents in the developing optic tectum of the Xenopus tadpole

非洲爪蟾蝌蚪发育过程中视顶盖电压门控内在电流的区域特异性调节

阅读:6
作者:Ali S Hamodi, Kara G Pratt

Abstract

Across the rostrocaudal (RC) axis of the Xenopus tadpole optic tectum exists a developmental gradient. This gradient has served as a useful model to study many aspects of synapse and dendrite maturation. To compliment these studies, we characterized how the intrinsic excitability, the ease in which a neuron can fire action potentials, might also be changing across the same axis. Whole-cell recordings from tectal neurons at different points along the RC axis revealed a graded increase in intrinsic excitability: compared with neurons at the caudal end of the tectum, neurons at the rostral end fired more action potentials in response to current injection and expressed greater peak Na⁺ and K⁺ currents, the major intrinsic currents in these neurons that underlie the action potential. We also observed, along the same axis and in the same direction, a previously described increase in the amount of synaptic drive received by individual neurons (Wu GY, Malinow R, Cline HT. Science 274: 972-976, 1996). Thus as synaptic activity ramps up across the RC axis, so does intrinsic excitability. The reduction of overall circuit activity induced a compensatory scaling up of peak Na⁺ and K⁺ currents only in the caudal portion of the tectum, suggesting a region-specific, compensatory form of plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。