Targeting Super-Enhancers via Nanoparticle-Facilitated BRD4 and CDK7 Inhibitors Synergistically Suppresses Pancreatic Ductal Adenocarcinoma

通过纳米粒子促进的 BRD4 和 CDK7 抑制剂靶向超级增强子协同抑制胰腺导管腺癌

阅读:6
作者:Chen-Song Huang, Xinru You, Chunlei Dai, Qiong-Cong Xu, Fuxi Li, Li Wang, Xi-Tai Huang, Jie-Qin Wang, Shi-Jin Li, Zhuoxing Gao, Jun Wu, Xiao-Yu Yin, Wei Zhao

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant cancer with complex genomic variations, and no targetable genomic lesions have been found yet. Super-enhancers (SEs) have been found to contribute to the continuous and robust oncogenic transcription. Here, histone H3 lysine 27 acetylation (H3K27ac) is profiled in PDAC cell lines to establish SE landscapes. Concurrently, it is also shown that PDAC is vulnerable to the perturbation of the SE complex using bromodomain-containing protein 4 (BRD4) inhibitor, JQ1, synergized with cyclin-dependent kinase 7 (CDK7) inhibitor, THZ1. Formulations of hydrophobic l-phenylalanine-poly (ester amide) nanoparticles (NPs) with high drug loading of JQ1 and THZ1 (J/T@8P4s) are further designed and developed. J/T@8P4s is assessed for size, encapsulation efficiency, morphology, drug release profiles, and drug uptake in vitro. Compared to conventional free drug formulation, the nanodelivery system dramatically reduces the hepatotoxicity while significantly enhancing the tumor inhibition effects and the bioavailability of incorporated JQ1 and THZ1 at equal doses in a Gemcitabine-resistant PDAC patient-derived xenograft (PDX) model. Overall, the present study demonstrates that the J/T@8P4s can be a promising therapeutic treatment against the PDAC via suppression of SE-associated oncogenic transcription, and provides a strategy utilizing NPs to assist the drug delivery targeting SEs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。