3D printed titanium cages combined with the Masquelet technique for the reconstruction of segmental femoral defects: Preliminary clinical results and molecular analysis of the biological activity of human-induced membranes

3D打印钛笼联合Masquelet技术修复股骨节段性缺损:初步临床结果及人源化膜生物活性的分子分析

阅读:8
作者:Kevin Tetsworth, Anna Woloszyk, Vaida Glatt

Conclusions

This study demonstrates that the use of a patient-specific 3D printed custom titanium cage, inserted into an induced membrane in a 2-stage protocol, can achieve very acceptable clinical outcomes in selected cases of post-traumatic femoral segmental defects. Patient-specific 3D printed titanium cages, used in conjunction with the Masquelet technique, are a promising new treatment option for managing complex trauma patients with femoral bone loss. Level of evidence: Level IV (observational case series).

Methods

The study was composed of a clinical observational case series, and a basic science investigation to evaluate the biological activity of the induced membranes using histology, immunohistochemistry (IHC), and gene expression analysis. Eligible patients were: adult; post-traumatic; with segmental femoral defects; minimum follow-up 1 year; managed under a 2-stage protocol, with an interim antibiotic poly (methyl methacrylate) (PMMA) spacer. Definitive reconstruction was completed with exchange to a 3D printed custom titanium cage filled with bone graft, and stabilized with either an intramedullary (IM) nail or a lateral locked plate.

Results

Patient-specific 3D printed titanium cages were used in 5 consecutive patients to reconstruct post-traumatic segmental femoral defects. The mean interval between stages was 100.2 days (83-119 days), the mean defect length was 14.0 cm (10.3-18.4 cm), and the mean bone defect volume measured 192.4 cc (114-292 cc). The mean length of follow-up was 21.8 months (12-33 months). There were no deep infections, fractures, nerve injuries, loss of alignment, or nonunions identified during the period of follow-up. All of the patients achieved union clinically and radiographically. Histology and IHC demonstrated a greater number of vessels, cell nuclei, and extensive staining for cluster of differentiation 68 (CD68), platelet and endothelial cell adhesion molecule 1 (PECAM-1), and vascular endothelial growth factor (VEGF) in the induced membranes compared to local fascia controls. Gene expression analysis revealed significant differential regulation of essential genes involved in inflammatory, angiogenic, and osteogenic pathways [interleukin 6 (IL-6), nuclear factor kappa B1 (NF-κB1), receptor activator of nuclear factor kappa-β ligand (RANKL), vascular endothelial growth factor A (VEGFA), angiogenin (ANG), transforming growth factor, beta 1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), growth differentiation factor 5 (GDF-5), growth differentiation factor 10 (GDF-10), and runt-related transcription factor 2 (RUNX-2)] in the induced membranes. Conclusions: This study demonstrates that the use of a patient-specific 3D printed custom titanium cage, inserted into an induced membrane in a 2-stage protocol, can achieve very acceptable clinical outcomes in selected cases of post-traumatic femoral segmental defects. Patient-specific 3D printed titanium cages, used in conjunction with the Masquelet technique, are a promising new treatment option for managing complex trauma patients with femoral bone loss. Level of evidence: Level IV (observational case series).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。