Generation of transgenic mouse line with prostate-specific expression of codon-improved Cre recombinase

具有前列腺特异性表达密码子改进的 Cre 重组酶的转基因小鼠系的产生

阅读:6
作者:Mayuko Kanayama, Kazuki Nakao, Shigeo Horie, Atsu Aiba

Background

Genetically engineered mouse models are useful tools to decipher molecular mechanisms of diseases. As for prostates, a rat probasin promoter has been widely used to drive prostate-specific gene expression. To optimize its codon usage to that of mammals, we used codon-improved Cre recombinase (iCre) for prostate-specific Cre-loxP recombination. Materials and

Conclusions

We have successfully established a transgenic mouse line that expresses iCre in a prostate-specific manner.

Methods

We generated transgenic mice that express iCre driven by conventional probasin promoter in a prostate-specific manner (PB-iCre). Linearized PB-iCre transgene deoxyribonucleic acids (DNAs) were microinjected into pronuclei of fertilized mouse embryos. The integration of the transgene was confirmed by Southern blot analysis. A line of transgenic mice expressing a sufficient amount of iCre mRNA in its prostate was selected. To test recombinase activity of PB-iCre in vivo, its offspring was crossbred with Ptenflox/flox mice in which murine prostate adenocarcinoma is reported to occur upon excision of loxP-flanked regions.

Results

Eight founder animals were obtained, all of which showed germ line integration of PB-iCre transgene by Southern blot analysis. Among them, the prostate from only one line (line 58) expressed a sufficient amount of iCre mRNA. This line was crossbred with Ptenflox/flox mice to generate PB-iCre58/Ptenflox/flox. As a result, 12-week-old PB-iCre58/Ptenflox/flox mice presented with prostate adenocarcinoma that was histologically similar to human cribriform prostate cancer of Gleason grade 4. Conclusions: We have successfully established a transgenic mouse line that expresses iCre in a prostate-specific manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。