Patient-Specific Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cells as a Model to Study Autosomal Recessive Hypercholesterolemia

以患者特异性诱导性多能干细胞衍生的肝细胞样细胞作为研究常染色体隐性高胆固醇血症的模型

阅读:9
作者:Parisa Nikasa, Tine Tricot, Nejat Mahdieh, Hossein Baharvand, Mehdi Totonchi, Mohammad Saeid Hejazi, Catherine M Verfaillie

Abstract

Autosomal recessive hypercholesterolemia (ARH) is a rare monogenic disorder caused by pathogenic variants in the low-density lipoprotein receptor (LDLR) adaptor protein 1 (LDLRAP1) gene, encoding for the LDLRAP1 protein, which impairs internalization of hepatic LDLR. There are variable responses of ARH patients to treatment and the pathophysiological mechanism(s) for this variability remains unclear. This is in part caused by absence of reliable cellular models to evaluate the effect of LDLRAP1 mutations on the LDLRAP1 protein function and its role in LDLR internalization. Here, we aimed to validate patient-specific induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) as an appropriate tool to model ARH disease. Fibroblasts from an ARH patient carrying the recently reported nonsense mutation, c.649G>T, were reprogrammed into hiPSCs using Sendai viral vectors. In addition, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to create an LDLRAP1 gene (also known as ARH) knockout in two different human iPSC lines. ARH patient-derived iPSCs, ARH-knockout iPSC lines, and control iPSCs were efficiently differentiated into HLCs. Western blot analysis demonstrated the absence of LDLRAP1 in HLCs derived from patient and knockout iPSCs, and this was associated with a decreased low-density lipoprotein cholesterol (LDL-C) uptake in ARH-mutant/knockout HLCs compared to control HLCs. In conclusion, we determined that the recently described c.649G>T point mutation in LDLRAP1 induces absence of the LDLRAP1 protein, similar to what is seen following LDLRAP1 knockout. This causes a decreased, although not fully absent, LDL-uptake in ARH-mutant/knockout HLCs. As knockout of LDLRAP1 or presence of the c.649G>T point mutation results in absence of LDLRAP1 protein, residual LDL uptake might be regulated by LDLRAP1-independent internalization mechanisms. Patient-specific iPSC-derived HLCs can therefore be a powerful tool to further decipher LDLRAP1 mutations and function of the protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。