TBHQ improved neurological recovery after traumatic brain injury by inhibiting the overactivation of astrocytes

TBHQ 通过抑制星形胶质细胞的过度激活来改善创伤性脑损伤后的神经功能恢复

阅读:6
作者:Zhen-Wen Zhang, Jun Liang, Jing-Xing Yan, Yi-Chao Ye, Jing-Jing Wang, Chong Chen, Hong-Tao Sun, Feng Chen, Yue Tu, Xiao-Hong Li

Abstract

Traumatic brain injury (TBI) is a major leading cause of death and long-term disability. Although astrocytes play a key role in neuroprotection after TBI in the early stage, the overactivation of astrocytes can lead to long-term functional deficits, and the underlying pathophysiological mechanisms remain unclear. In addition, it is unknown whether the nuclear factor erythroid 2-related factor2/haem oxygenase-1 (Nrf-2/HO-1) pathway could elicit a neuroprotective effect by decreasing astrocyte overactivation after TBI. We aimed to study the effects of tert-butylhydroquinone (TBHQ) in reducing astrocyte overactivation after TBI and explored the underlying mechanisms. We first established a controlled cortical impact (CCI) model in rats and performed Haematoxylin and eosin (H&E) staining to observe brain tissue damage. The cognitive function of rats was assessed by modified neurological severity scoring (mNSS) and Morris water maze (MWM) test. Astrocyte and microglia activation was detected by immunofluorescence staining. Oxidative stress conditions were investigated using Western blotting. An enzyme-linked immunosorbent assay (ELISA) was designed to assess the level of the proinflammatory factor tumour necrosis factor-alpha (TNF-α). Dihydroethidium (DHE) staining was used to detect reactive oxygen species (ROS). Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The results showed that the administration of TBHQ ameliorated motor function and cognitive deficits and decreased the lesion volume. In addition, TBHQ significantly decreased astrocyte overactivation, diminished the pro-inflammatory phenotype M1 and inflammatory cytokines production after TBI, increased Nrf-2 nuclear accumulation, and enhanced the levels of the Nrf-2 downstream antioxidative genes HO-1 and NADPH-quinone oxidoreductase-1 (NQO-1). Furthermore, TBHQ treatment alleviated apoptosis and neuronal death in the cerebral cortex. Overall, our data indicated that the upregulation of Nrf-2 expression could enhance neuroprotection and decrease astrocyte overactivation and might represent a new theoretical basis for treating TBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。