Engineering ligand stabilized aquaporin reporters for magnetic resonance imaging

用于磁共振成像的工程配体稳定水通道蛋白报告基因

阅读:6
作者:Jason Yun, Logan Baldini, Yimeng Huang, Eugene Li, Honghao Li, Asish N Chacko, Austin D C Miller, Jinyang Wan, Arnab Mukherjee

Abstract

Imaging transgene expression in live tissues requires reporters that are detectable with deeply penetrant modalities, such as magnetic resonance imaging (MRI). Here, we show that LSAqp1, a water channel engineered from aquaporin-1, can be used to create background-free, drug-gated, and multiplex images of gene expression using MRI. LSAqp1 is a fusion protein composed of aquaporin-1 and a degradation tag that is sensitive to a cell-permeable ligand, which allows for dynamic small molecule modulation of MRI signals. LSAqp1 improves specificity for imaging gene expression by allowing reporter signals to be conditionally activated and distinguished from the tissue background by difference imaging. In addition, by engineering destabilized aquaporin-1 variants with different ligand requirements, it is possible to image distinct cell types simultaneously. Finally, we expressed LSAqp1 in a tumor model and showed successful in vivo imaging of gene expression without background activity. LSAqp1 provides a conceptually unique approach to accurately measure gene expression in living organisms by combining the physics of water diffusion and biotechnology tools to control protein stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。