Characterization of the ATG8-conjugation system in 2 Plasmodium species with special focus on the liver stage: possible linkage between the apicoplastic and autophagic systems?

种疟原虫中 ATG8 结合系统的特征,特别关注肝脏阶段:顶端塑性系统和自噬系统之间可能存在联系?

阅读:5
作者:Bamini Jayabalasingham, Christiane Voss, Karen Ehrenman, Julia D Romano, Maria E Smith, David A Fidock, Juergen Bosch, Isabelle Coppens

Abstract

Plasmodium parasites successfully colonize different habitats within mammals and mosquitoes, and adaptation to various environments is accompanied by changes in their organelle composition and size. Previously, we observed that during hepatocyte infection, Plasmodium discards organelles involved in invasion and expands those implicated in biosynthetic pathways. We hypothesized that this process is regulated by autophagy. Plasmodium spp. possess a rudimentary set of known autophagy-related proteins that includes the ortholog of yeast Atg8. In this study, we analyzed the activity of the ATG8-conjugation pathway over the course of the lifecycle of Plasmodium falciparum and during the liver stage of Plasmodium berghei. We engineered a transgenic P. falciparum strain expressing mCherry-PfATG8. These transgenic parasites expressed mCherry-PfATG8 in human hepatocytes and erythrocytes, and in the midgut and salivary glands of Anopheles mosquitoes. In all observed stages, mCherry-PfATG8 was localized to tubular structures. Our EM and colocalization studies done in P. berghei showed the association of PbATG8 on the limiting membranes of the endosymbiont-derived plastid-like organelle known as the apicoplast. Interestingly, during parasite replication in hepatocytes, the association of PbATG8 with the apicoplast increases as this organelle expands in size. PbATG3, PbATG7 and PbATG8 are cotranscribed in all parasitic stages. Molecular analysis of PbATG8 and PbATG3 revealed a novel mechanism of interaction compared with that observed for other orthologs. This is further supported by the inability of Plasmodium ATG8 to functionally complement atg8Δ yeast or localize to autophagosomes in starved mammalian cells. Altogether, these data suggests a unique role for the ATG8-conjugation system in Plasmodium parasites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。