Formation of Müller glia-derived progenitor cells in retinas depleted of microglia

在缺乏小胶质细胞的视网膜中形成穆勒胶质细胞衍生的祖细胞

阅读:5
作者:Heithem M El-Hodiri, James Bentley, Alana Reske, Isabella Palazzo, Warren A Campbell, Nicklaus R Halloy, Andy J Fischer

Abstract

Recent studies have demonstrated the complex coordination of pro-inflammatory signaling and reactive microglia/macrophage on the formation Müller glial-derived progenitor cells (MGPCs) in the retinas of fish, birds and mice. We generated scRNA-seq libraries to identify transcriptional changes in Müller glia (MG) that result from the depletion of microglia from the chick retina. We found significant changes in different networks of genes in MG in normal and damaged retinas when the microglia are ablated. We identified a failure of MG to upregulate Wnt-ligands, Heparin binding epidermal growth factor (HBEGF), Fibroblast growth factor (FGF), retinoic acid receptors and genes related to Notch-signaling. Inhibition of GSK3β, to simulate Wnt-signaling, failed to rescue the deficit in formation of proliferating MGPCs in damaged retinas missing microglia. By comparison, application of HBEGF or FGF2 completely rescued the formation of proliferating MGPCs in microglia-depleted retinas. Similarly, injection of a small molecule inhibitor to Smad3 or agonist to retinoic acid receptors partially rescued the formation of proliferating MGPCs in microglia-depleted damaged retinas. According to scRNA-seq libraries, patterns of expression of ligands, receptors, signal transducers and/or processing enzymes to cell-signaling via HBEGF, FGF, retinoic acid and TGFβ are rapidly and transiently upregulated by MG after neuronal damage, consistent with important roles for these cell-signaling pathways in regulating the formation of MGPCs. We conclude that quiescent and activated microglia have a significant impact upon the transcriptomic profile of MG. We conclude that signals produced by reactive microglia in damaged retinas stimulate MG to upregulate cell signaling through HBEGF, FGF and retinoic acid, and downregulate signaling through TGFβ/Smad3 to promote the reprogramming on MG into proliferating MGPCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。