Normal endothelial but impaired arterial development in MAP-Kinase activated protein kinase 2 (MK2) deficient mice

缺乏 MAP-Kinase 活化蛋白激酶 2 (MK2) 的小鼠内皮正常,但动脉发育受损

阅读:10
作者:L Christian Napp #, Olga Jabs #, Anna Höckelmann, Jochen Dutzmann, Piyush R Kapopara, Daniel G Sedding, Matthias Gaestel, Johann Bauersachs, Udo Bavendiek

Abstract

Angiogenesis is a fundamental process during development and disease, and many details of the underlying molecular and cellular mechanisms are incompletely understood. Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), a major downstream target of p38 MAPK, has recently been identified as a regulator of Interleukin 1β dependent angiogenesis in vivo, and in vitro data suggest a role of MK2 for VEGF-dependent angiogenic processes in endothelial cells. We thus hypothesized that MK2 plays a role during physiological vascular development in vivo. Vascular development was investigated in the retina of MK2-deficient mice. Retinal angiogenesis such as sprouting, branching and pruning was unchanged in MK2-/- mice compared to wildtype littermates. Early arterial development was also comparable between genotypes. However, with further expansion of vascular smooth muscle cells (SMC) during maturation of the arterial network at later time points, the number of arterial branch points was significantly lower in MK2-/- mice, resulting in a reduced total arterial area in adult mice. Isolated aortic smooth muscle cells from MK2-/- mice showed a more dedifferentiated phenotype in vitro and downregulation of central SMC marker genes, consistent with the known impaired migration of MK2-/- SMC. In conclusion, MK2 is not required for physiological retinal angiogenesis. However, its loss is associated with an altered genetic profile of SMC and an impaired arterial network in adult mice, indicating a distinct and probably cell-specific role of MK2 in arteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。