Quantitative PCR versus metagenomics for monitoring antibiotic resistance genes: balancing high sensitivity and broad coverage

定量 PCR 与宏基因组学在抗生素耐药基因监测中的应用:平衡高灵敏度和广泛覆盖度

阅读:3
作者:Catarina Ferreira, Saria Otani, Frank Møller Aarestrup, Célia M Manaia

Abstract

The widespread occurrence of clinically relevant antibiotic resistance within humans, animals, and environment motivates the development of sensitive and accurate detection and quantification methods. Metagenomics and quantitative PCR (qPCR) are amongst the most used approaches. In this study, we aimed to evaluate and compare the performance of these methods to screen antibiotic resistance genes in animal faecal, wastewater, and water samples. Water and wastewater samples were from hospital effluent, different treatment stages of two treatment plants, and of the receiving river at the discharge point. The animal samples were from pig and chicken faeces. Antibiotic resistance gene coverage, sensitivity, and usefulness of the quantitative information were analyzed and discussed. While both methods were able to distinguish the resistome profiles and detect gradient stepwise mixtures of pig and chicken faeces, qPCR presented higher sensitivity for the detection of a few antibiotic resistance genes in water/wastewater. In addition, the comparison of predicted and observed antibiotic resistance gene quantifications unveiled the higher accuracy of qPCR. Metagenomics analyses, while less sensitive, provided a markedly higher coverage of antibiotic resistance genes compared to qPCR. The complementarity of both methods and the importance of selecting the best method according to the study purpose are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。