25(OH) D3 alleviate liver NK cytotoxicity in acute but not in chronic fibrosis model of BALB/c mice due to modulations in vitamin D receptor

由于维生素 D 受体的调节,25(OH) D3 可减轻 BALB/c 小鼠急性肝纤维化模型中的肝 NK 细胞毒性,但对慢性肝纤维化模型中的肝 NK 细胞毒性无效

阅读:5
作者:Ahmad Salhab, Johnny Amer, Lu Yinying, Rifaat Safadi

Background

Low 25-Hydroxy-vitamin-D; "25(OH)-D3" serum and vitamin D receptor (VDR) levels were recently correlated to advanced fibrosis. However, VDR mechanism in liver fibrosis modulations is not well understood. In this study, we aimed to evaluate changes in liver NK cells cytotoxicity due to modulations in VDR in CCl4 fibrosis model following 25(OH) D3 injections.

Conclusion

Vitamin D alleviate liver NK cytotoxicity in acute but not in chronic fibrosis model due to modulations in vitamin D receptor and calcium. Hypercalcemia associated with late fibrosis may inhibited VDR levels, however, may not explain the profibrogenic effects of vitamin D.

Methods

Carbon-tetrachloride (CCl4) hepatic-fibrosis was induced in BALB/c mice for 1 and 4 weeks as an acute and chronic fibrosis model, respectively. Along 1th to 4th weeks, vitamin D were i.p injected/2x week. Liver were assessed histologically and for proteins quantification for VDR and αSMA expressions. In vitro, potential killing of NK cells were evaluated following co-culture with primary-hepatic-stellate-cells (pHSCs) obtained from BALB/c WT-mice.

Results

Systemic inflammation and hepatic-fibrosis increased along 4 weeks of CCl4 as indicated by serum ALT and αSMA expressions (P < 0.02) as well as histological assessments, respectively. These results were associated with increased NK1.1 activations and hypercalcemia. While vitamin D administrations delayed fibrosis of early stages, vitamin D worsen hepatic-fibrosis of late stages of CCl4. In week 4, no further activations of NK cells were seen following vitamin D injections and were associated with down-expressions of VDR (1.7 Fold, P < 0.004) indicating the inability of vitamin D to ameliorate hepatic fibrosis. In vitro, NK cells from the chronic model of CCl4 did not affect pHSCs killing and fail to reduce fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。