Self-assembled PROTACs enable protein degradation to reprogram the tumor microenvironment for synergistically enhanced colorectal cancer immunotherapy

自组装的PROTACs能够通过蛋白质降解重编程肿瘤微环境,从而协同增强结直肠癌免疫治疗。

阅读:3
作者:Xinchen Lu ,Jinmei Jin ,Ye Wu ,Jiayi Lin ,Xiaokun Zhang ,Shengxin Lu ,Jiyuan Zhang ,Chunling Zhang ,Maomao Ren ,Hongzhuan Chen ,Weidong Zhang ,Xin Luan

Abstract

Both β-catenin and STAT3 drive colorectal cancer (CRC) growth, progression, and immune evasion, and their co-overexpression is strongly associated with a poor prognosis. However, current small molecule inhibitors have limited efficacy due to the reciprocal feedback activation between STAT3 and β-catenin. Inspired by the PROteolysis TArgeting Chimera (PROTAC), a promising pharmacological modality for the selective degradation of proteins, we developed a strategy of nanoengineered peptide PROTACs (NP-PROTACs) to degrade both β-catenin and STAT3 effectively. The NP-PROTACs were engineered by coupling the peptide PROTACs with DSPE-PEG via disulfide bonds and self-assembled into nanoparticles. Notably, the dual degradation of β-catenin and STAT3 mediated by NP-PROTACs led to a synergistic antitumor effect compared to single-target treatment. Moreover, NP-PROTACs treatment enhanced CD103+ dendritic cell infiltration and T-cell cytotoxicity, alleviating the immunosuppressive microenvironment induced by β-catenin/STAT3 in CRC. These results highlight the potential of NP-PROTACs in facilitating the simultaneous degradation of two pathogenic proteins, thereby providing a novel avenue for cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。