Integration of protein abundance and structure data reveals competition in the ErbB signaling network

蛋白质丰度和结构数据的整合揭示了 ErbB 信号网络中的竞争

阅读:6
作者:Christina Kiel, Erik Verschueren, Jae-Seong Yang, Luis Serrano

Abstract

The mechanisms of context-specific differences in signal transduction, such as those that occur among different cell types, are not fully understood. One possibility is that differences in the abundance of proteins change signaling outputs because these proteins compete for binding to hub proteins at critical network branch points. Focusing on the ErbB signaling, we created a protein interaction network that included information about protein domains and analyzed the role of competing protein interactions. By leveraging three-dimensional protein structures to infer steric interactions among binding partners for a common binding domain or linear motif (node) and including information about protein abundance and interaction affinities, we identified a large number of competitive, mutually exclusive (XOR) protein interactions. Modeling changes in protein abundance with different patterns of partner proteins and XOR nodes (XOR motifs) revealed that each motif conferred a different response. We experimentally investigated the XOR motif containing the hub protein Ras and its binding partners RIN1 (Ras and Rab interactor 1) and CRAF (v-raf-leukemia viral oncogene 1). Consistent with the computational prediction, overexpression of RIN1 in cultured cells decreased the phosphorylation of CRAF and its downstream targets. Thus, our analyses provide evidence that variation in the abundance of proteins that compete for binding to XOR nodes could contribute to context-specific signaling plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。