Atomoxetine affects transcription/translation of the NMDA receptor and the norepinephrine transporter in the rat brain--an in vivo study

阿托西汀影响大鼠脑中 NMDA 受体和去甲肾上腺素转运蛋白的转录/翻译——一项体内研究

阅读:5
作者:Patrick T Udvardi, Karl J Föhr, Carolin Henes, Stefan Liebau, Jens Dreyhaupt, Tobias M Boeckers, Andrea G Ludolph

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder. The norepinephrine transporter (NET) inhibitor atomoxetine, the first nonstimulant drug licensed for ADHD treatment, also acts as an N-methyl-D-aspartate receptor (NMDAR) antagonist. The compound's effects on gene expression and protein levels of NET and NMDAR subunits (1, 2A, and 2B) are unknown. Therefore, adolescent Sprague Dawley rats were treated with atomoxetine (3 mg/kg, intraperitoneal injection [i.p.]) or saline (0.9%, i.p.) for 21 consecutive days on postnatal days (PND) 21-41. In humans, atomoxetine's earliest clinical therapeutic effects emerge after 2-3 weeks. Material from prefrontal cortex, striatum (STR), mesencephalon (MES), and hippocampus (HC) was analyzed either directly after treatment (PND 42) or 2 months after termination of treatment (PND 101) to assess the compound's long-term effects. In rat brains analyzed immediately after treatment, protein analysis exhibited decreased levels of the NET in HC, and NMDAR subunit 2B in both STR and HC; the transcript levels were unaltered. In rat brains probed 2 months after final atomoxetine exposure, messenger RNA analysis also revealed significantly reduced levels of genes coding for NMDAR subunits in MES and STR. NMDAR protein levels were reduced in STR and HC. Furthermore, the levels of two SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, synaptophysin and synaptosomal-associated protein 25, were also significantly altered in both treatment groups. This in vivo study detected atomoxetine's effects beyond NET inhibition. Taken together, these data reveal that atomoxetine seems to decrease glutamatergic transmission in a brain region-specific manner. Long-term data show that the compound's impact is not due to an acute pharmacological effect but lasts or even amplifies after a drug-free period of 2 months, leading to altered development of synaptic composition. These alterations might contribute to atomoxetine's clinical effects in the treatment of ADHD, a neurodevelopmental disorder in which synaptic processes and especially a dysregulated glutamatergic metabolism seem to be involved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。