Temporal gene expression analysis of human coronary artery endothelial cells treated with Simvastatin

辛伐他汀治疗人冠状动脉内皮细胞的时间基因表达分析

阅读:7
作者:Li Qin Zhang, Shwu-Fan Ma, Dmitry Grigoryev, Tera L Lavoie, Hui Qing Xiao, Robert Setterquist, Hailong Li, Jeffrey Jacobson, Joe G N Garcia, Shui Qing Ye

Abstract

Increasing evidence indicates that the beneficial "pleiotropic" effects of statins on clinical events involve nonlipid mechanisms including the modification of blood vessel endothelial cell function. However, the involved molecular events and pathways are not completely understood. In the present study, Affymetrix microarrays were used to monitor the temporal gene expression of human coronary artery endothelial cells (HCAEC) treated with simvastatin (Sim) to gain insight into statins' direct effects on the endothelial function. We isolated and labeled mRNA from HCAEC treated with Sim for 0, 3, 6, 12, 24, and 48 h and hybridized these samples to Affymetrix GeneChip HG-U95Av2 to analyze the temporal gene expression profile. Out of 12,625 genes present on the HG-U95Av2 GeneChip, expression of 5,432 genes was detected. There were 1,475 of 5,432 genes that displayed the differential expression compared to baseline (0 h). Fifty-four genes were upregulated (< or = twofold) while 61 genes were downregulated ( > or = twofold) at 24-48 h after the Sim treatment. Many new target genes and pathways modulated by Sim were uncovered. This study indicates that many aspects of the pleiotropic effect of Sim on the endothelial cell function can be mediated by transcriptional control. Physiological function of 22% of 115 differentially expressed genes in Sim-treated HCAEC are currently unknown. These newly identified genes could be useful for new mechanistic study and new therapeutic modalities. Expressions of 13 out of 18 genes (> 70%) in the cell cycle/proliferation control process were significantly inhibited by the Sim treatment. CDC25B and ITGB4 gene expressions were validated by RT-PCR and Western blotting. Sim's inhibitory effect of on HCAEC growth was confirmed by the measurement of [3H]thymidine incorporation into the DNA synthesis. Further in-depth analysis of this effect may shed light on molecular mechanisms of Sim's beneficial inhibition of neointima formation in the atherosclerotic artery stenosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。