Thermoresponsive, hollow, degradable core-shell nanoparticles for intra-articular delivery of anti-inflammatory peptide

用于关节内递送抗炎肽的热响应性、中空、可降解的核壳纳米粒子

阅读:5
作者:Marcus Deloney, Kyra Smart, Blaine A Christiansen, Alyssa Panitch

Abstract

Inflammation following joint trauma contributes to cartilage degradation and progression of post traumatic osteoarthritis (PTOA). Therefore, drug delivery vehicles that deliver effective anti-inflammatory treatments have the potential to prevent PTOA. We have developed solid and hollow, thermoresponsive nanoparticles for the controlled release of our anti-inflammatory MK2-inhibiting (MK2i) peptide for intra-articular injection to halt inflammation that contributes to the advancement of PTOA. This system exploits the thermosensitive characteristic of N-isopropyl acrylamide (NIPAm) to transition phases when passing through its lower critical solution temperature (LCST). The nanoparticles (NPs) swell below the LCST and constrict above it. Non-crosslinked poly(NIPAm) (pNIPAm), held above its LCST, formed hydrophobic cores around which shells composed of NIPAm, degradable crosslinker N, N'-bis (acryloyl) cystamine (BAC), sulfated 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and acrylic acid (AAc) were polymerized. Removal of the non-crosslinked pNIPAm cores via diffusion produced thermosensitive, degradable nanoparticles with low density, or hollow, cores. The data presented here revealed low-density, termed hollow, nanoparticles (hNPs) load and release significantly more MK2i than solid nanoparticles (sNPs). Furthermore, drug loading below the LCST of NIPAm results in roughly 2.5 times more therapeutic encapsulation compared to loading particles in their constricted state. Hollow nanoparticles increase drug loading compared to solid nanoparticles, are taken up into chondrocytes within 24 h, cleared from the cells within 6 days, significantly decrease the secretion of the proinflammatory cytokine IL-6, and, via intra-articular injection, are successfully delivered into the joint space of rats. The peptide loaded nanoparticles provide a reproducible platform for intra-articular delivery of therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。