Tumor-like features of gene expression and metabolic profiles in enlarged pancreatic islets are associated with impaired incretin-induced insulin secretion in obese diabetes: A study of Zucker fatty diabetes mellitus rat

胰腺胰岛增大的基因表达和代谢谱的肿瘤样特征与肥胖糖尿病中肠促胰岛素诱导的胰岛素分泌受损有关:一项针对 Zucker 肥胖糖尿病大鼠的研究

阅读:4
作者:Tomohide Hayami, Norihide Yokoi, Takuro Yamaguchi, Kohei Honda, Naoya Murao, Harumi Takahashi, Shujie Wang, Yusuke Seino, Hideki Kamiya, Daisuke Yabe, Ian R Sweet, Akira Mizoguchi, Jiro Nakamura, Susumu Seino

Conclusions

The enlarged islets of Zucker fatty diabetes mellitus rats, which are defective for IIIS, show tumor cell-like metabolic features, including a dedifferentiated state, accelerated aerobic glycolysis and impaired mitochondrial function. The age-dependent increase in such islets could contribute to the pathophysiology of obese diabetes.

Methods

Pancreatic islets of control (fa/+) and fatty (fa/fa) rats at 8 and 12 weeks-of-age were isolated. The islets of fa/fa rats at 12 weeks-of-age were separated into non-large islets (≤200 μm in diameter) and enlarged islets (>300 μm in diameter). Morphological analyses, insulin secretion experiments, transcriptome analysis, metabolome analysis and oxygen consumption analysis were carried out on these islets.

Results

The number of enlarged islets was increased with age in fatty rats, and IIIS was significantly reduced in the enlarged islets. Markers for β-cell differentiation were markedly decreased in the enlarged islets, but those for cell proliferation were increased. Glycolysis was enhanced in the enlarged islets, whereas the tricarboxylic acid cycle was suppressed. The oxygen consumption rate under glucose stimulation was reduced in the enlarged islets. Production of glutamate, a key signal for IIIS, was decreased in the enlarged islets. Conclusions: The enlarged islets of Zucker fatty diabetes mellitus rats, which are defective for IIIS, show tumor cell-like metabolic features, including a dedifferentiated state, accelerated aerobic glycolysis and impaired mitochondrial function. The age-dependent increase in such islets could contribute to the pathophysiology of obese diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。