Local anesthetic bupivacaine inhibits proliferation and metastasis of hepatocellular carcinoma cells via suppressing PI3K/Akt and MAPK signaling

局麻药布比卡因通过抑制PI3K/Akt和MAPK信号抑制肝癌细胞增殖和转移

阅读:7
作者:Lei Wang, Weijia Guo, Hongman Guan, Ni Yan, Xiaolan Cai, Lili Zhu

Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Retrospective studies suggest that using local/regional anesthetic (LA/RA) is associated with better outcomes in primary HCC patients. In this study, we evaluated the effects of LA/RA bupivacaine in HCC cells and the underlying molecular mechanisms. The biological functions of bupivacaine in HCC cells were evaluated by transcriptome RNA sequencing, cell viability assay, bromodeoxyuridine incorporation assay, colony formation assay, flow cytometry, western blot, wound healing assay, transwell cell migration assay, tumor xenograft formation, and lung metastasis assay. Bupivacaine suppressed proliferation and induced apoptosis of HepG2 and SNU-449 cells in a time- and dose-dependent manner. Bupivacaine treatment also decreased colony formation, migration, and invasion of HepG2 and SNU-449 cells. In mouse models, bupivacaine repressed tumor xenograft growth and lung metastasis of HepG2 cells. Transcriptome sequencing of HepG2 cells suggested that PI3K/Akt and MAPK signaling pathways were suppressed by bupivacaine treatment. In western blot analysis, bupivacaine reduced the expression of total and phosphorylated Akt, mTOR, and MAPK. Furthermore, reactivated PI3K/Akt and MAPK signaling by EGF or NRG1 partially reversed the effects of bupivacaine on cell growth, colony formation, and invasion of HCC cells. Local anesthetic bupivacaine suppressed proliferation, migration and invasion, and induced apoptosis of HCC cells. Our results provided novel insights into the local anesthetic bupivacaine in the therapy of HCC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。