Progress towards drug discovery for Friedreich's Ataxia: Identifying synthetic oligonucleotides that more potently activate expression of human frataxin protein

弗里德赖希共济失调药物研发进展:鉴定更有效激活人类 frataxin 蛋白表达的合成寡核苷酸

阅读:14
作者:Xiulong Shen, Johnathan Wong, Thahza P Prakash, Frank Rigo, Yanjie Li, Marek Napierala, David R Corey

Abstract

Friedreich's Ataxia (FRDA) is an incurable genetic disease caused by an expanded trinucleotide AAG repeat within intronic RNA of the frataxin (FXN) gene. We have previously demonstrated that synthetic antisense oligonucleotides or duplex RNAs that are complementary to the expanded repeat can activate expression of FXN and return levels of FXN protein to near normal. The potency of these compounds, however, was too low to encourage vigorous pre-clinical development. We now report testing of "gapmer" oligonucleotides consisting of a central DNA portion flanked by chemically modified RNA that increases binding affinity. We find that gapmer antisense oligonucleotides are several fold more potent activators of FXN expression relative to previously tested compounds. The potency of FXN activation is similar to a potent benchmark gapmer targeting the nuclear noncoding RNA MALAT-1, suggesting that our approach has potential for developing more effective compounds to regulate FXN expression in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。