A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells

多功能多药理学平台促进人类多能分化细胞的细胞保护和活力

阅读:4
作者:Yu Chen #, Carlos A Tristan #, Lu Chen, Vukasin M Jovanovic, Claire Malley, Pei-Hsuan Chu, Seungmi Ryu, Tao Deng, Pinar Ormanoglu, Dingyin Tao, Yuhong Fang, Jaroslav Slamecka, Hyenjong Hong, Christopher A LeClair, Sam Michael, Christopher P Austin, Anton Simeonov, Ilyas Singeç

Abstract

Human pluripotent stem cells (hPSCs) are capable of extensive self-renewal yet remain highly sensitive to environmental perturbations in vitro, posing challenges to their therapeutic use. There is an urgent need to advance strategies that ensure safe and robust long-term growth and functional differentiation of these cells. Here, we deployed high-throughput screening strategies to identify a small-molecule cocktail that improves viability of hPSCs and their differentiated progeny. The combination of chroman 1, emricasan, polyamines, and trans-ISRIB (CEPT) enhanced cell survival of genetically stable hPSCs by simultaneously blocking several stress mechanisms that otherwise compromise cell structure and function. CEPT provided strong improvements for several key applications in stem-cell research, including routine cell passaging, cryopreservation of pluripotent and differentiated cells, embryoid body (EB) and organoid formation, single-cell cloning, and genome editing. Thus, CEPT represents a unique poly-pharmacological strategy for comprehensive cytoprotection, providing a rationale for efficient and safe utilization of hPSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。