Electrospun cellulose acetate/activated carbon composite modified by EDTA (rC/AC-EDTA) for efficient methylene blue dye removal

EDTA 改性电纺纤维素醋酸纤维/活性炭复合材料 (rC/AC-EDTA) 可有效去除亚甲蓝染料

阅读:6
作者:Nehad A Elmaghraby, Ahmed M Omer, El-Refaie Kenawy, Mohamed Gaber, Mohamed A Hassaan, Safaa Ragab, Ismail Hossain, Ahmed El Nemr

Abstract

The present study fabricated regenerated cellulose nanofiber incorporated with activated carbon and functionalized rC/AC3.7 with EDTA reagent for methylene blue (MB) dye removal. The rC/AC3.7 was fabricated by electrospinning cellulose acetate (CA) with activated carbon (AC) solution followed by deacetylation. FT-IR spectroscopy was applied to prove the chemical structures. In contrast, BET, SEM, TGA and DSC analyses were applied to study the fiber diameter and structure morphology, the thermal properties and the surface properties of rC/AC3.7-EDTA. The CA was successfully deacetylated to give regenerated cellulose nanofiber/activated carbon, and then ethylenediaminetetraacetic acid dianhydride was used to functionalize the fabricated nanofiber composite. The rC/AC3.7-EDTA, rC/AC5.5-EDTA and rC/AC6.7-EDTA were tested for adsorption of MB dye with maximum removal percentages reaching 97.48, 90.44 and 94.17%, respectively. The best circumstances for batch absorption experiments of MB dye on rC/AC3.7-EDTA were pH 7, an adsorbent dose of 2 g/L, and a starting MB dye concentration of 20 mg/L for 180 min of contact time, with a maximum removal percentage of 99.14%. The best-fit isotherm models are Temkin and Hasely. The outcome of isotherm models illustrates the applicability of the Langmuir isotherm model (LIM). The maximal monolayer capacity Qm determined from the linear LIM is 60.61 for 0.5 g/L of rC/AC3.7-EDTA. However, based on the results from error function studies, the generalized isotherm model has the lowest accuracy. The data obtained by the kinetic models' studies exposed that the absorption system follows the pseudo-second-order kinetic model (PSOM) throughout the absorption period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。