Conclusion
Thus, the optimized strategy for iCS generation is safer and has more therapeutic potentials.
Methods
Four transgene-free approaches for somatic reprogramming, including episome, minicircle, self-replicative RNA, and sendai virus, were compared, from the perspective of cardiac progenitor marker expression, iCS formation, and cardiac differentiation. The therapeutic effects were assessed in the mouse model of MI, from the perspective of survival rate, cardiac function, and structural alterations.
Results
The self-replicative RNA approach produced more iCS, which had cardiomyocyte differentiation ability and therapeutic effects on the mouse model of MI with comparable levels with endogenous cardiospheres and iCS generated with retrovirus. In addition, the CXCR4 (C-X-C chemokine receptor 4) positive subpopulation of iCS derived cells (iCSDC) delivered by intravenous injection was found to have similar therapeutic effects with intramyocardial injection on the mouse model of MI, representing a safer delivery approach.
