Electroacupuncture improves cardiac function after myocardial infarction by regulating the mobilization and migration of endogenous stem cells

电针通过调节内源性干细胞的动员和迁移改善心肌梗死后的心脏功能

阅读:8
作者:Shou-Song Xuan, Yue Zhao, Yan Zheng, Jing Zhu, Han Li, Ping-Ping Lu, Shui-Jin Shao, Hai-Dong Guo, Fang-Fang Mou

Conclusions

EA appears to promote angiogenesis and reduce collagen deposition, thus improving the cardiac function of rats with MI. The underlying mechanism of action may involve endogenous stem cell mobilization mediated by SDF-1/CXCR4 and SCF/c-kit.

Methods

An MI model was constructed in adult male Sprague-Dawley rats by ligating the left anterior descending coronary artery. After 4 weeks of treatment, echocardiography was used to detect changes in cardiac function, and Masson's trichrome staining was used to detect collagen deposition. In addition, immunofluorescence staining was applied to examine von Willebrand factor (vWF)-positive vessels, the expression of cardiac troponin T (cTnT) and proliferation marker Ki67, and the number of c-kit-positive, C-X-C chemokine receptor type 4 (CXCR4)-positive, and Sca-1-positive endogenous stem cells in the infarcted area. In addition, the expression of stromal cell-derived factor (SDF)-1 and stem cell factor (SCF) was detected.

Objective

The aim of this study was to explore the role and mechanisms of electroacupuncture (EA) in the regulation of chemokines in endogenous stem cell mobilization and myocardial regeneration after myocardial infarction (MI).

Results

EA increased the ejection fraction after MI, reduced collagen deposition and cellular apoptosis, and increased the number of blood vessels compared with an untreated model group. EA significantly promoted cellular proliferation, except for myocardial cells, and significantly increased the number of c-kit-, CXCR4- and Sca-1-positive stem cells. Moreover, the expression of SDF-1 and SCF in myocardial tissue in the EA group was significantly higher than that in the (untreated) MI group. Conclusions: EA appears to promote angiogenesis and reduce collagen deposition, thus improving the cardiac function of rats with MI. The underlying mechanism of action may involve endogenous stem cell mobilization mediated by SDF-1/CXCR4 and SCF/c-kit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。