Protective effects of 2,3,5,4-tetrahydroxystilbene-2-o-β-D-glucoside against osteoporosis: Current knowledge and proposed mechanisms

2,3,5,4-四羟基二苯乙烯-2-o-β-D-葡萄糖苷对骨质疏松症的预防作用:当前的知识和可能的机制

阅读:8
作者:Jinkang Zhang, Songlin Li, Linlan Wei, Ye Peng, Ziyang Zheng, Jing Xue, Yukun Cao, Bin Wang, Junjie Du

Aim

The aim of this study was to explore the mechanism underlying the protective effects of 2,3,5,4-tetrahydroxystilbene-2-o-β-D-glucoside (TSG) against osteoporosis. Method: MC3T3-E1 mouse osteoblast precursor cells were used to analyze the protective effects of TSG on osteoblast apoptosis and differential inhibition induced by oxidative stress to determine the gene expression of forkhead transcription factor FKHRL1 (FoxO3a), T cell factors (TCFs), and downstream genes. A mouse model was used to assess the protective effects of TSG on ovariectomy-induced osteoporosis as well as on Cell Counting Kit-8 (CCK) gene expression, including that of FoxO3a. The mechanism underlying the protective effects of TSG against osteoporosis was further explored using high-throughput sequencing data.

Conclusion

Osteoporosis and cardiac diseases appear to share a common mechanism. In addition to Wnt/FoxO3a signaling, the immune system and the chemokine signaling pathway may contribute to the protective mechanism of TSG.

Results

A CCK-8 assay in MC3T3-E1 cells and hematoxylin and eosin staining in mouse tissue indicated that cell viability and bone tissue development were inhibited by oxidative stress and ovariectomy and that TSG neutralized or attenuated this effect. The expression levels of FoxO3a, TCF, and downstream genes and the indices of oxidative stress were the same in MC3T3-E1 cells and the bone tissues of the mouse model. Bioinformatics analysis indicated that the cardiac muscle contraction and chemokine signaling pathway were disturbed in MC3T3-E1 cells treated with hydrogen peroxide. Gene ontology-biological process analysis revealed the influence of TSG treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。