5-Fluorouracil adsorption on graphene oxide-amine modified graphene oxide/hydroxyapatite composite for drug delivery applications: Optimization and release kinetics studies

5-氟尿嘧啶在氧化石墨烯-胺改性氧化石墨烯/羟基磷灰石复合材料上的吸附用于药物输送应用:优化和释放动力学研究

阅读:9
作者:Ebru Kahraman, Gulhayat Nasun-Saygili

Abstract

The present study focused on investigation of graphene oxide/hydroxyapatite (GO/HAp) and amine modified graphene oxide/hydroxyapatite (GO-NH2/HAp) composites as potential drug carrier agents for 5-Fluorouracil (5-FU). Incorporation of 5-Fluorouracil drug was performed via adsorption through π-π interactions and electrostatic attractions. Modification of graphene oxide was performed for the production of amine modified graphene oxide/hydroxyapatite composite with the intention of enhancing adsorption performance. The X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and zeta potential/particle size analysis were performed for particle characterization while Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis were used to analyze detailed morphological properties. Experimental design studies were followed out in order to determine the effect of adsorption parameters including graphene oxide amount, pH and initial drug concentration on 5-Fluorouracil adsorption behavior. Adsorption isotherms of both composites with unmodified and modified GO were best fitted to Freundlich model with R2 values of 0.9616 and 0.9682 respectively. The maximum adsorption capacities (qm) were calculated as 47.3 mg/g and 18.4 for graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites respectively at pH 2.0. The highest adsorption percentage was obtained for amine modified graphene oxide/hydroxyapatite composite as 40.87 % at pH 2.0 condition. In vitro release kinetic studies revealed that compliance with Higuchi and Korsmeyer-Peppas kinetic models were observed for graphene oxide/hydroxyapatite, whereas zero order and Korsmeyer-Peppas kinetic models pointed out as the well-fitted model for amine modified graphene oxide/hydroxyapatite composite. The release period of 5-FU drug from all composites were continued up to 8-10 h in physiological conditions (pH 7.4, 37 °C) indicating an achieved controlled release. Based on the overall findings, graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites could be suggested as a potential drug delivery agent for 5-FU in clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。