Fabrication and Characterization of Superhydrophobic Al-Based Surface Used for Finned-Tube Heat Exchangers

用于翅片管热交换器的超疏水铝基表面的制备及表征

阅读:11
作者:Ran Li, Zanshe Wang, Meijuan Chen, Zhang Li, Xiaowei Luo, Weizhen Lu, Zhaolin Gu

Abstract

Enhancing the heat transfer performance of heat exchangers is one of the main methods to reduce energy consumption and carbon emissions in heating, ventilation, air-conditioning and refrigeration (HVAC&R) systems. Wettability modified surfaces developed gradually may help. This study aims to improve the performance of heat exchangers from the perspective of component materials. The facile and cost-effective fabrication method of superhydrophobic Al-based finned-tube heat exchangers with acid etching and stearic acid self-assembly was proposed and optimized in this study, so that the modified Al fins could achieve stronger wettability and durability. The effect of process parameters on the wettability of the Al fins was by response surface methodology (RSM) and variance analysis. Then, the modified fins were characterized by field-emission scanning electron microscopy (FE-SEM), 3D topography profiler, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR), respectively. The durability of the superhydrophobic fins was investigated by air exposure, corrosion resistance, and mechanical robustness experiments. The RSM and variance analysis demonstrated that a water contact angle (WCA) of 166.9° can be obtained with the etching time in 2 mol/L HCl solution of 10.5 min, the self-assembly time in the stearic acid ethanol solution of 48 h, and drying under 73.0 °C. The surface morphology showed suitable micro-nano structures with a mean roughness (Ra) of 467.58 nm and a maximum peak-to-valley vertical distance (Rt) of 4.095 μm. The chemical component demonstrated the self-assembly of an alkyl chain. The WCAs declined slightly in durability experiments, which showed the feasibility of the superhydrophobic heat exchangers under actual conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。