Graphene-Enabled, Spatially Controlled Electroporation of Adherent Cells for Live-Cell Super-resolution Microscopy

利用石墨烯实现粘附细胞的空间控制电穿孔,实现活细胞超分辨率显微镜

阅读:8
作者:Seonah Moon, Wan Li, Meghan Hauser, Ke Xu

Abstract

The incorporation of exogenous molecules into live cells is essential for both biological research and therapeutic applications. In particular, for the emerging field of super-resolution microscopy of live mammalian cells, it remains a challenge to deliver tailored, often cell-impermeable, fluorescent probes into live cells for target labeling. Here, utilizing the outstanding mechanical, electrical, and optical properties of graphene, we report a facile approach that enables both high-throughput delivery of fluorescent probes into adherent mammalian cells and in situ super-resolution microscopy on the same device. Approximately 90% delivery efficiencies are achieved for free dyes and dye-tagged affinity probes, short peptides, and whole antibodies, thus enabling high-quality super-resolution microscopy. Moreover, we demonstrate good spatiotemporal controls, which, in combination with the ready patternability of graphene, allow for the spatially selective delivery of two different probes for cells at different locations on the same substrate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。