The traditional Chinese formulae Ling-gui-zhu-gan decoction alleviated non-alcoholic fatty liver disease via inhibiting PPP1R3C mediated molecules

中药苓桂术甘汤通过抑制 PPP1R3C 介导分子改善非酒精性脂肪性肝病

阅读:4
作者:Yanqi Dang, Shijun Hao, Wenjun Zhou, Li Zhang, Guang Ji

Background

Ling-gui-zhu-gan decoction (LGZG), a classic traditional Chinese medicine formula, has been confirmed to be effective in improving steatosis in non-alcoholic fatty liver disease (NAFLD). However, the mechanism under the efficacy remains unclear. Hence, this study was designed to investigate the mechanisms of LGZG on alleviating steatosis.

Conclusion

Our data highlighted the role of PPP1R3C targeting pathways, and found that hepatic glycogen metabolism might be the potential target of LGZG in preventing NAFLD.

Methods

Twenty four rats were randomly divided into three groups: normal group, NAFLD group, fed with high fat diet (HFD) and LGZG group (fed with HFD and supplemented with LGZG). After 4 weeks intervention, blood and liver were collected. Liver steatosis was detected by Oil Red O staining, and blood lipids were biochemically determined. Whole genome genes were detected by RNA-Seq and the significant different genes were verified by RT-qPCR. The protein expression of Protein phosphatase 1 regulatory subunit 3C (PPP1R3C) and key molecules of glycogen and lipid metabolism were measured by western blot. Chromophore substrate methods measured glycogen phosphorylase (GPa) activity and glycogen content.

Results

HFD can markedly induce hepatic steatosis and promote liver triglyceride (TG) and serum cholesterol (CHOL) contents, while liver TG and serum CHOL were both markedly decreased by LGZG treatment for 4 weeks. By RNA sequencing, we found that NAFLD rats showed significantly increase of PPP1R3C expression and LGZG reduced its expression. RT-qPCR and Western blot both verified the alteration of PPP1R3C upon LGZG intervention. LGZG also promoted the activity of glycogen phosphorylase liver type (PYGL) and inhibited the activity of glycogen synthase (GS) in NAFLD rats, resulting in glycogenolysis increase and glycogen synthesis decrease in the liver. By detecting glycogen content, we also found that LGZG reduced hepatic glycogen in NAFLD rats. In addition, we analyzed the key molecules in hepatic de novo lipogenesis and cholesterol synthesis, and indicated that LGZG markedly inhibited the activity of acetyl-CoA carboxylase (ACC), sterol receptor element-binding protein-1c (SREBP-1c) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), resulting in lipid synthesis decrease in the liver.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。