Glucose metabolism is required for oocyte maturation of zebrafish

斑马鱼卵母细胞成熟需要葡萄糖代谢

阅读:5
作者:Tao Kang, Shengyou Zhao, Lina Shi, Jianzhen Li

Abstract

Glucose is an essential source of energy production for animal cells. The importance of glucose metabolism in oocyte maturation has been studied extensively in mammals. However, such roles in non-mammalian species are still largely unknown. Here, we used zebrafish as a model, which is phylogenetically distant from mammals, and analyzed the role of glucose metabolism in oocyte maturation. Major glucose transporters (GLUT/Slc2A) were analyzed in zebrafish, two Slc2a1 (Slc2a1a and Slc2a1b), one Slc2a2, and two Slc2a3 (Slc2a3a and Slc2a3b) were identified. Among these five Slc2a genes, slc2a1b exhibited the highest expression level in fully grown follicles. The expression of slc2a1b gradually increased during folliculogenesis, and also significantly increases during the oocyte maturation process. Consistently, the glucose concentration increases during natural oocyte maturation. By using a fluorescent glucose derivative (6-NBDG) to trace glucose transport, the uptake of glucose by ovarian follicles in a time-dependent manner could be observed. Intriguingly, by treatment of glucose in vitro, oocyte maturation could be induced in a time-, dose- and stage-dependent manner. Glucose can be metabolized by glycolysis, the pentose phosphate pathway (PPP), the hexosamine biosynthesis pathway (HBP), and the polyol pathway. Using the inhibitors for these pathways, we found only PPP but not glycolysis, HBP or polyol pathway is essential for oocyte maturation. All these results clearly demonstrate for the first time that the glucose metabolism is required for oocyte maturation of zebrafish, suggesting the highly conserved role of glucose metabolism in control of oocyte maturation between fish and mammals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。