Paradoxic effects of metformin on endothelial cells and angiogenesis

二甲双胍对内皮细胞和血管生成的矛盾作用

阅读:6
作者:Katiuscia Dallaglio, Antonino Bruno, Anna R Cantelmo, Alessia I Esposito, Luca Ruggiero, Stefania Orecchioni, Angelica Calleri, Francesco Bertolini, Ulrich Pfeffer, Douglas M Noonan, Adriana Albini

Abstract

The biguanide metformin is used in type 2 diabetes management and has gained significant attention as a potential cancer preventive agent. Angioprevention represents a mechanism of chemoprevention, yet conflicting data concerning the antiangiogenic action of metformin have emerged. Here, we clarify some of the contradictory effects of metformin on endothelial cells and angiogenesis, using in vitro and in vivo assays combined with transcriptomic and protein array approaches. Metformin inhibits formation of capillary-like networks by endothelial cells; this effect is partially dependent on the energy sensor adenosine-monophosphate-activated protein kinase (AMPK) as shown by small interfering RNA knockdown. Gene expression profiling of human umbilical vein endothelial cells revealed a paradoxical modulation of several angiogenesis-associated genes and proteins by metformin, with short-term induction of vascular endothelial growth factor (VEGF), cyclooxygenase 2 and CXC chemokine receptor 4 at the messenger RNA level and downregulation of ADAMTS1. Antibody array analysis shows an essentially opposite regulation of numerous angiogenesis-associated proteins in endothelial and breast cancer cells including interleukin-8, angiogenin and TIMP-1, as well as selective regulation of angiopioetin-1, -2, endoglin and others. Endothelial cell production of the cytochrome P450 member CYP1B1 is upregulated by tumor cell supernatants in an AMPK-dependent manner, metformin blocks this effect. Metformin inhibits VEGF-dependent activation of extracellular signal-regulated kinase 1/2, and the inhibition of AMPK activity abrogates this event. Metformin hinders angiogenesis in matrigel pellets in vivo, prevents the microvessel density increase observed in obese mice on a high-fat diet, downregulating the number of white adipose tissue endothelial precursor cells. Our data show that metformin has an antiangiogenic activity in vitro and in vivo associated with a contradictory short-term enhancement of pro-angiogenic mediators, as well as with a differential regulation in endothelial and breast cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。