CC-Chemokine Receptor-2 Expression in Osteoblasts Contributes to Cartilage and Bone Damage during Post-Traumatic Osteoarthritis

成骨细胞中的 CC-趋化因子受体 2 表达导致创伤后骨关节炎期间的软骨和骨损伤

阅读:8
作者:Helen Willcockson, Huseyin Ozkan, José Valdés-Fernández, Liubov Arbeeva, Esra Mucahit, Layla Musawwir, Lola B Hooper, Froilán Granero-Moltó, Felipe Prósper, Lara Longobardi

Abstract

In osteoarthritis (OA), bone changes are radiological hallmarks and are considered important for disease progression. The C-C chemokine receptor-2 (CCR2) has been shown to play an important role in bone physiology. In this study, we investigated whether Ccr2 osteoblast-specific inactivation at different times during post-traumatic OA (PTOA) progression improves joint structures, bone parameters, and pain. We used a tamoxifen-inducible Ccr2 inactivation in Collagen1α-expressing cells to obtain osteoblasts lacking Ccr2 (CCR2-Col1αKO). We stimulated PTOA changes in CCR2-Col1αKO and CCR2+/+ mice using the destabilization of the meniscus model (DMM), inducing recombination before or after DMM (early- vs. late-inactivation). Joint damage was evaluated at two, four, eight, and twelve weeks post-DMM using multiple scores: articular-cartilage structure (ACS), Safranin-O, histomorphometry, osteophyte size/maturity, subchondral bone thickness and synovial hyperplasia. Spontaneous and evoked pain were assessed for up to 20 weeks. We found that early osteoblast-Ccr2 inactivation delayed articular cartilage damage and matrix degeneration compared to CCR2+/+, as well as DMM-induced bone thickness. Osteophyte formation and maturation were only minimally affected. Late Collagen1α-Ccr2 deletion led to less evident improvements. Osteoblast-Ccr2 deletion also improved static measures of pain, while evoked pain did not change. Our study demonstrates that Ccr2 expression in osteoblasts contributes to PTOA disease progression and pain by affecting both cartilage and bone tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。