Efficient differentiation and polarization of primary cultured neurons on poly(lactic acid) scaffolds with microgrooved structures

具有微槽结构的聚乳酸支架上原代培养神经元的有效分化和极化

阅读:9
作者:Asako Otomo #, Mahoko Takahashi Ueda #, Toshinori Fujie, Arihiro Hasebe, Yoshitaka Suematsu, Yosuke Okamura, Shinji Takeoka, Shinji Hadano, So Nakagawa

Abstract

Synthetic biodegradable polymers including poly(lactic acid) (PLA) are attractive cell culture substrates because their surfaces can be micropatterned to support cell adhesion. The cell adhesion properties of a scaffold mainly depend on its surface chemical and structural features; however, it remains unclear how these characteristics affect the growth and differentiation of cultured cells or their gene expression. In this study, we fabricated two differently structured PLA nanosheets: flat and microgrooved. We assessed the growth and differentiation of mouse primary cultured cortical neurons on these two types of nanosheets after pre-coating with poly-D-lysine and vitronectin. Interestingly, prominent neurite bundles were formed along the grooves on the microgrooved nanosheets, whereas thin and randomly extended neurites were only observed on the flat nanosheets. Comparative RNA sequencing analyses revealed that the expression of genes related to postsynaptic density, dendritic shafts, and asymmetric synapses was significantly and consistently up-regulated in cells cultured on the microgrooved nanosheets when compared with those cultured on the flat nanosheets. These results indicate that microgrooved PLA nanosheets can provide a powerful means of establishing a culture system for the efficient and reproducible differentiation of neurons, which will facilitate future investigations of the molecular mechanisms underlying the pathogenesis of neurological disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。