Male and female rats exhibit comparable gaping behavior but activate brain regions differently during expression of conditioned nausea

雄性和雌性大鼠表现出相似的张口行为,但在表达条件性恶心时激活的大脑区域不同

阅读:7
作者:Alyssa Bernanke, Samantha Sette, Nathaniel Hernandez, Sara Zimmerman, Justine Murphy, Reynold Francis, Zackery Reavis, Cynthia Kuhn

Abstract

Twenty-five to fifty percent of patients undergoing chemotherapy will develop anticipatory nausea and vomiting (ANV), in which symptoms occur in anticipation of treatment. ANV is triggered by environmental cues and shows little response to traditional antiemetic therapy, suggesting that unique neural pathways mediate this response. Understanding the underlying neural mechanisms of this disorder is critical to the development of novel therapeutic interventions. The purpose of the present study was to identify brain areas activated during ANV and characterize sex differences in both the behavior and the brain areas activated during ANV. We used a rat model of ANV by pairing a novel context with the emetic drug lithium chloride (LiCl) to produce conditioned nausea behaviors in the LiCl-paired environment. We quantitated gaping, an analog of human vomiting, after acute or repeated LiCl in a unique environment. To identify brain regions associated with gaping, we measured c-fos activation by immunochemical staining after these same treatments. We found that acute LiCl activated multiple brain regions including the supraoptic nucleus of the hypothalamus, central nucleus of the amygdala, nucleus of the solitary tract and area postrema, none of which were activated during ANV. ANV activated c-fos expression in the frontal cortex, insula and paraventricular nucleus of the hypothalamus of males but not females. These data suggest that therapies such as ondansetron which target the area postrema are not effective in ANV because it is not activated during the ANV response. Further studies aimed at characterizing the neural circuits and cell types that are activated in the conditioned nausea response will help identify novel therapeutic targets for the treatment of this condition, improving both quality of life and outcomes for patients undergoing chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。