Pterostilbene suppresses oxidative stress and allergic airway inflammation through AMPK/Sirt1 and Nrf2/HO-1 pathways

紫檀芪通过 AMPK/Sirt1 和 Nrf2/HO-1 通路抑制氧化应激和过敏性呼吸道炎症

阅读:4
作者:Chang Xu, Yilan Song, Zhiguang Wang, Jingzhi Jiang, Yihua Piao, Li Li, Shan Jin, Liangchang Li, Lianhua Zhu, Guanghai Yan

Conclusion

Pts alleviated oxidative stress and allergic airway inflammation via regulation of AMPK/Sirt1and Nrf2/HO-1 signaling pathways.

Methods

Asthma model was established in mice with ovalbumin (OVA). The model mice were treated by different concentrations of Pts. Lung pathological changes were observed through histological staining. In vitro, lipopolysaccharide (LPS)-stimulated 16HBE cells were treated with Pts. The siAMPKα2, siSirt1 and siNrf2 knockdown, and treatment with compound C, EX-527 or ML385 were also performed in 16HBE cells. Enzyme-linked immunosorbent assay was used to detect interleukin-4 (IL-4), IL-13, IL-5, total and OVA specific immunoglobulin E (IgE), and interferon γ (IFN-γ). Pneumonography was used to measure the airway hyperreactivity (AHR). Superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels were also detected. Immunohistochemistry, Western blot and immunofluorescence were used to measure protein levels.

Results

Pts significantly attenuated lung inflammatory cell infiltration and goblet cell proliferation. Meanwhile, Pts treatment could reduce IL-4, IL-13, IL-5, and IgE (total and OVA specific) levels in the asthma model mice. However, IFN-γ in bronchoalveolar lavage fluid was elevated. In addition, Pts reduced AHR. We also found that Pts treatment promoted serum SOD and CAT, and reduced MDA. In vitro results showed that Pts treatment promoted iNOS, TNF-α, COX-2, IL-1β, and IL-6 expressions in 16HBE cells, prolonged G0/G1 phase of the cell cycle, and resulted in a shortened G2M phase. Moreover, we found that Pts promoted the phosphorylation of AMPK in 16HBE, and meanwhile inhibited the increase of ROS induced by LPS. Additionally, Pts treatment inhibited p-AMPK, Sirt1, Nrf2 and HO-1, which in turn leads to the alleviation of AMPK/Sirt1 and Nrf2/HO-1 pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。