Development of Amylose- and β-Cyclodextrin-Based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

开发基于直链淀粉和β-环糊精的含三噻吩基侧链的手性荧光传感器

阅读:12
作者:Tomoyuki Ikai, Changsik Yun, Yutaka Kojima, Daisuke Suzuki, Katsuhiro Maeda, Shigeyoshi Kanoh

Abstract

Phenylcarbamate derivatives of amylose and β-cyclodextrin show excellent chiral recognition when used as chiral stationary phases (CSPs) for high-performance liquid chromatography. To open up new possibilities of carbohydrate-based materials, we developed chiral fluorescent sensors based on amylose and β-cyclodextrin (Am-1b and CyD-1b, respectively) by attaching fluorescent π-conjugated units on their side chains. Their recognition abilities toward chiral analytes containing a nitrophenyl unit were evaluated by measuring the enantioselective fluorescence quenching behavior. Both sensors showed the same degree of enantioselective fluorescence response for various aromatic nitro compounds. However, in some cases, their enantioselectivities were different depending on the analytes. The difference in the chiral recognition abilities between Am-1b and CyD-1b seems to be based on the structural difference of their inherent backbones, that is, the one-handed helical structure and cyclic structure, respectively. The study on the resolution ability of the Am-1b-based CSP revealed that the terthienyl-based pendant of Am-1b provides not only a fluorescent functionality but also a different chiral recognition site from that of amylose tris(phenylcarbamate).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。