Aquaporin 4 differentially modulates osmotic effects on vasopressin neurons in rat supraoptic nucleus

水通道蛋白 4 差异调节大鼠视上核加压素神经元的渗透效应

阅读:5
作者:Xiaoran Wang, Tong Li, Yang Liu, Shuwei Jia, Xiaoyu Liu, Yunhao Jiang, Ping Wang, Vladimir Parpura, Yu-Feng Wang

Aim

Glial fibrillary acidic protein (GFAP) molecularly associates with aquaporin 4 (AQP4) in astrocytic plasticity. Here, we further examined how AQP4 modulates osmotic effects on vasopressin (VP) neurons in rat supraoptic nucleus (SON) through interactions with GFAP in astrocytes.

Conclusion

These findings indicate that osmotically driven increase in VP neuronal activity requires the activation of AQP4, which determines a retraction of GFAP filaments.

Methods

Brain slices from adult male rats were kept under osmotic stimulation. Western blot, co-immunoprecipitation, immunohistochemistry and patch-clamp recordings were used for analysis of expressions and interactions between GFAP and AQP4, astrocyte-specific proteins in the SON, as well as their influence on VP neuronal activity. Data were analysed using SPSS software.

Results

Hyposmotic challenge (HOC) of acute SON slices caused an early (within 5 minutes) and transient increase in the colocalization of AQP4 with GFAP filaments. This effect was prominent at astrocytic processes surrounding VP neuron somata and was accompanied by inhibition of VP neuronal activity. Similar HOC effect was seen in the SON isolated from rats subjected to in vivo HOC, wherein a transiently increased molecular association between GFAP and AQP4 was detected using co-immunoprecipitation. The late stage rebound excitation (10 minutes) of VP neurons in brain slices subjected to HOC and the associated astrocytic GFAP's 'return to normal' were both hampered by 2-(nicotinamide)-1,3,4-thiadiazole, a specific AQP4 channel blocker that itself did not influence VP neuronal activity. Moreover, this agent prevented hyperosmotic stress-evoked excitation of VP neurons and associated reduction in GFAP filaments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。