Aim
Glioma is the most common and lethal primary brain tumor. Even with the development of multidisciplinary treatment approaches,
Conclusion
Cells with p75NTR overexpression demonstrated certain unique characteristics of tumor-initiating cells, such as neurosphere formation, high colony proliferation, and resistance to radio- and chemotherapy. With regard to the heterogeneous composition of glioma cells, p75NTR can be used as an alternative marker to identify a glioma subpopulation with tumor-initiating properties.
Methods
C6 cells with high and low expression of p75NTR were sorted using flow cytometry. The neurosphere characteristics and properties of these two subpopulations were assessed and compared with those of parental cells. Radiation and chemotherapy sensitivity was also analyzed in these cell populations. Finally, in vivo tumorigenicity of cells was tested in a rat model.
Results
Cells overexpressing p75NTR (C6p75+++ cells) demonstrated greater ability of neurosphere formation, colony proliferation, and certain stem cell marker overexpression than cells with low p75NTR expression (C6p75+) and parental cells. In addition, following irradiation or temozolomide treatment, more viable C6p75+++ cells remained, and they proliferated into more colonies. In vivo, C6p75+++ cell implantation in Sprague Dawley rats reduced the survival time.
