MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men

对于未经训练的中年男性,MitoQ 补充剂可增强急性运动引起的肌肉 PGC1α mRNA 增加,并改善训练引起的峰值功率增加,与线粒体含量和功能无关

阅读:5
作者:S C Broome, T Pham, A J Braakhuis, R Narang, H W Wang, A J R Hickey, C J Mitchell, T L Merry

Abstract

The role of mitochondrial ROS in signalling muscle adaptations to exercise training has not been explored in detail. We investigated the effect of supplementation with the mitochondria-targeted antioxidant MitoQ on a) the skeletal muscle mitochondrial and antioxidant gene transcriptional response to acute high-intensity exercise and b) skeletal muscle mitochondrial content and function following exercise training. In a randomised, double-blind, placebo-controlled, parallel design study, 23 untrained men (age: 44 ± 7 years, VO2peak: 39.6 ± 7.9 ml/kg/min) were randomised to receive either MitoQ (20 mg/d) or a placebo for 10 days before completing a bout of high-intensity interval exercise (cycle ergometer, 10 × 60 s at VO2peak workload with 75 s rest). Blood samples and vastus lateralis muscle biopsies were collected before exercise and immediately and 3 h after exercise. Participants then completed high-intensity interval training (HIIT; 3 sessions per week for 3 weeks) and another blood sample and muscle biopsy were collected. There was no effect of acute exercise or MitoQ on systemic (plasma protein carbonyls and reduced glutathione) or skeletal muscle (mtDNA damage and 4-HNE) oxidative stress biomarkers. Acute exercise-induced increases in skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) mRNA expression were augmented in the MitoQ group. Despite this, training-induced increases in skeletal muscle mitochondrial content were similar between groups. HIIT-induced increases in VO2peak and 20 km time trial performance were also similar between groups while training-induced increases in peak power achieved during the VO2peak test were augmented in the MitoQ group. These data suggest that training-induced increases in peak power are enhanced following MitoQ supplementation, which may be related to the augmentation of skeletal muscle PGC1α expression following acute exercise. However, these effects do not appear to be related to an effect of MitoQ supplementation on exercise-induced oxidative stress or training-induced mitochondrial biogenesis in skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。