Inflammatory activation of endothelial cells increases glycolysis and oxygen consumption despite inhibiting cell proliferation

内皮细胞的炎症激活尽管抑制了细胞增殖,但会增加糖酵解和氧消耗

阅读:5
作者:Jonas Aakre Wik, Danh Phung, Shrikant Kolan, Guttorm Haraldsen, Bjørn Steen Skålhegg, Johanna Hol Fosse

Abstract

Endothelial cell function and metabolism are closely linked to differential use of energy substrate sources and combustion. While endothelial cell migration is promoted by 2-phosphofructokinase-6/fructose-2,6-bisphosphatase (PFKFB3)-driven glycolysis, proliferation also depends on fatty acid oxidation for dNTP synthesis. We show that inflammatory activation of human umbilical vein endothelial cells (HUVECs) by interleukin-1β (IL-1β), despite inhibiting proliferation, promotes a shift toward more metabolically active phenotype. This was reflected in increased cellular glucose uptake and consumption, which was preceded by an increase in PFKFB3 mRNA and protein expression. However, despite a modest increase in extracellular acidification rates, the increase in glycolysis did not correlate with extracellular lactate accumulation. Accordingly, IL-1β stimulation also increased oxygen consumption rate, but without a concomitant rise in fatty acid oxidation. Together, this suggests that the IL-1β-stimulated energy shift is driven by shunting of glucose-derived pyruvate into mitochondria to maintain elevated oxygen consumption in HUVECs. We also revealed a marked donor-dependent variation in the amplitude of the metabolic response to IL-1β and postulate that the donor-specific response should be taken into account when considering targeting dysregulated endothelial cell metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。