The Effect of Colistin Resistance-Associated Mutations on the Fitness of Acinetobacter baumannii

粘菌素耐药相关突变对鲍曼不动杆菌适应性的影响

阅读:7
作者:Xinli Mu, Nanfei Wang, Xi Li, Keren Shi, Zhihui Zhou, Yunsong Yu, Xiaoting Hua

Abstract

Acinetobacter baumannii had emerged as an important nosocomial and opportunistic pathogen worldwide. To assess the evolution of colistin resistance in A. baumannii and its effect on bacterial fitness, we exposed five independent colonies of A. baumannii ATCC 17978 to increasing concentrations of colistin in agar (4/5) and liquid media (1/5). Stable resistant isolates were analyzed using whole genome sequencing. All strains were colistin resistant after exposure to colistin. In addition to the previously reported lpxCAD and pmrAB mutations, we identified four novel putative colistin resistance genes: A1S_1983. hepA. A1S_3026, and rsfS. Lipopolysaccharide (LPS) loss mutants exhibited higher fitness costs than those of the pmrB mutant in nutrient-rich medium. The colistin-resistant mutants had a higher inhibition ratio in the serum growth experiment than that of the wild type strain in 100% serum. Minimum inhibitory concentration (MIC) results showed that the LPS-deficient but not the pmrB mutant had an altered antibiotic resistance profile. The compensatory mutations partially or completely rescued the LPS-deficient's fitness, suggesting that compensatory mutations play an important role in the emergence and spread of colistin resistance in A. baumannii.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。