Palmitoylethanolamide prevents metabolic alterations and restores leptin sensitivity in ovariectomized rats

棕榈酰乙醇酰胺可预防卵巢切除大鼠的代谢改变并恢复瘦素敏感性

阅读:4
作者:G Mattace Raso, A Santoro, R Russo, R Simeoli, O Paciello, C Di Carlo, S Diano, A Calignano, Rosaria Meli

Abstract

It has been suggested a role of fatty acid ethanolamides in control of feeding behavior. Among these, palmitoylethanolamide (PEA) has not been directly implicated in appetite regulation and weight gain. The aim of this study was to investigate the effect of PEA on food intake and body weight and the interaction between PEA and hypothalamic leptin signaling in ovariectomized rats. Ovariectomy produced hyperphagia and increased weight gain, making it an useful model of mild obesity. Ovariectomized rats were treated with PEA (30 mg/kg sc) for 5 weeks. Then, blood was collected, and hypothalamus and adipose tissue were removed for histological, cellular, and molecular measurements. We showed that PEA caused a reduction of food intake, body weight, and fat mass. The mechanisms underlying PEA effects involved an improvement in hypothalamic leptin signaling, through a raise in signal transducer and activator of transcription 3 phosphorylation. We also reported that PEA reduced AMP-activated protein kinase-α phosphorylation and modulated transcription of anorectic and orexigenic neuropeptides in the hypothalamus. Moreover, PEA increased AMP-activated protein kinase-α phosphorylation and carnitine palmitoyltransferase 1 transcription in adipose tissue, suggesting an increase in ATP-producing catabolic pathway. PEA also polarized adipose tissue macrophages to M2 lean phenotype, associated to a reduction of inflammatory cytokines/adipokines. To demonstrate the direct effect of PEA on leptin sensitivity without interference of adiposity loss, we obtained consistent data in PEA-treated sham-operated animals and in vitro in SH-SY5Y neuroblastoma cell line. Therefore, our data provide a rationale for the therapeutic use of PEA in obese postmenopausal woman.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。