A new temperature-dependent strategy to modulate the epidermal growth factor receptor

调节表皮生长因子受体的新温度依赖策略

阅读:4
作者:Zhe Li, David R Tyrpak, Mincheol Park, Curtis T Okamoto, J Andrew MacKay

Abstract

The dynamic manipulation of kinases remains a major obstacle to unraveling cell-signaling networks responsible for the activation of biological systems. For example, epidermal growth factor (EGF) stimulates the epidermal growth factor receptor (EGFR/ErbB1); however, EGF also recruits other kinases (HER2/ErbB2) involved with various signaling pathways. To better study EGFR we report a new strategy to selectively activate receptor tyrosine kinases fused to elastin-like polypeptides (ELPs), which can be visualized inside mammalian cells using fixed and live-cell fluorescence microscopy. ELPs are high molecular weight polypeptides that phase separate abruptly upon heating. When an EGFR-ELP fusion is heated, it clusters, initiates receptor internalization, phosphorylates, initiates downstream kinase signaling, and undergoes retrograde transport towards the cell body. Unlike other strategies to block EGFR (small molecule inhibitors, RNAi, or transcriptional regulators), EGFR-ELP clustering can be specifically switched on or off within minutes. Live-cell imaging suggests that EGFR-ELPs assemble in most cells with only a 3 °C increase in temperature. This strategy was found reversible and able to dynamically control the downstream phosphorylation/activation of the ERK1/2 pathway. For the first time, this strategy enables the rational engineering of specific temperature-sensitive receptors that may have broad applications in the study and manipulation of biological processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。