PPARδ Activation Mitigates 6-OHDA-Induced Neuronal Damage by Regulating Intracellular Iron Levels

PPARδ激活通过调节细胞内铁水平减轻6-OHDA诱导的神经元损伤

阅读:4
作者:Won Jin Lee, Hyuk Gyoon Lee, Jinwoo Hur, Gyeong Hee Lee, Jun Pil Won, Eunsu Kim, Jung Seok Hwang, Han Geuk Seo

Abstract

Intracellular iron accumulation in dopaminergic neurons contributes to neuronal cell death in progressive neurodegenerative disorders such as Parkinson's disease. However, the mechanisms of iron homeostasis in this context remain incompletely understood. In the present study, we assessed the role of the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) in cellular iron homeostasis. We identified that PPARδ inhibited 6-hydroxydopamine (6-OHDA)-triggered neurotoxicity in SH-SY5Y neuroblastoma cells. PPARδ activation with GW501516, a specific PPARδ agonist, mitigated 6-OHDA-induced neuronal damage. Further, PPARδ activation also suppressed iron accumulation, which contributes to 6-OHDA-induced neuronal damage. PPARδ activation attenuated 6-OHDA-induced neuronal damage in a similar manner to that of the iron chelator deferoxamine. We further elucidated that PPARδ modulated cellular iron homeostasis by regulating expression of divalent metal transporter 1, ferroportin 1, and ferritin, but not transferrin receptor 1, through iron regulatory protein 1 in 6-OHDA-treated cells. Interestingly, PPARδ activation suppressed 6-OHDA-triggered generation of reactive oxygen species and lipid peroxides. The effects of GW501516 were abrogated by shRNA knockdown of PPARδ, indicating that the effects of GW501516 were PPARδ-dependent. Taken together, these findings suggest that PPARδ attenuates 6-OHDA-induced neurotoxicity by preventing intracellular iron accumulation, thereby suppressing iron overload-associated generation of reactive oxygen species and lipid peroxides, key mediators of ferroptotic cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。