MiR-153-3p induces immune dysregulation by inhibiting PELI1 expression in umbilical cord-derived mesenchymal stem cells in patients with systemic lupus erythematosus

MiR-153-3p 通过抑制系统性红斑狼疮患者脐带间充质干细胞中的 PELI1 表达诱导免疫失调

阅读:4
作者:Dan Li, Xiaoqing Li, Mingyue Duan, Yufeng Dou, Yuan Feng, Nan Nan, Wanggang Zhang

Abstract

Mesenchymal stem cells (MSCs) are identified as a promising tool for the treatment of autoimmune diseases, and several microRNAs (miRNAs) are shown to exhibit vital roles in immune diseases. However, their function and mechanism in systemic lupus erythematosus (SLE) is still unclear. The qRT-PCR analysis was employed to investigate level of miR-153-3p. Subsequently, western blot and luciferase reporter assays were carried out to determine miR-153-3p targets. Cell proliferation and migration were determined using EdU proliferation assays and transwell migration assays. Apoptosis levels were evaluated by annexin V staining and flow cytometry. We used human umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation to treat MRL/lpr mice. It was observed that miR-153-3p was upregulated in patients with SLE, and was closely related to SLE disease activity. Overexpression of miR-153-3p decreased UC-MSCs proliferation and migration, and weakened UC-MSCs-mediated decrease of follicular T helper (Tfh) cells and increase of regulatory T (Treg) cells through repressing PELI1 in vitro. We also found that PELI1 overexpression abolished the function of miR-153-3p on UC-MSCs. Furthermore, miR-153-3p overexpression weakened the therapeutic effect of UC-MSCs in MRL/lpr mice in vivo. Taken together, all data suggested that miR-153-3p is a mediator of SLE UC-MSCs regulation and may function as a new therapeutic target for the treatment of lupus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。