Mutant ras elevates dependence on serum lipids and creates a synthetic lethality for rapamycin

突变的ras提高了对血清脂质的依赖性并为雷帕霉素创造了合成致死性

阅读:4
作者:Darin Salloum, Suman Mukhopadhyay, Kaity Tung, Aleksandra Polonetskaya, David A Foster

Abstract

The conversion of normal cells to cancer cells involves a shift from catabolic to anabolic metabolism involving increased glucose uptake and the diversion of glycolytic intermediates into nucleotides, amino acids, and lipids needed for cell growth. An underappreciated aspect of nutrient uptake is the utilization of serum lipids. We investigated the dependence of human cancer cells on serum lipids and report here that Ras-driven human cancer cells are uniquely dependent on serum lipids for both proliferation and survival. Removal of serum lipids also sensitizes Ras-driven cancer cells to rapamycin-indicating that the enhanced need for serum lipids creates a synthetic lethal phenotype that could be exploited therapeutically. Although depriving humans of serum lipids is not practical, suppressing uptake of lipids is possible. Suppressing macropinocytosis in Ras-driven cancer cells also created sensitivity to suppression of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1). It is speculated that this property displayed by Ras-driven cancer cells represents an Achilles' heel for the large number of human cancers that are driven by activating Ras mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。