Anti-Proliferative Effect of Radiotherapy and Implication of Immunotherapy in Anaplastic Thyroid Cancer Cells

放射治疗对甲状腺未分化癌细胞的抗增殖作用及免疫治疗的意义

阅读:6
作者:Sabine Wächter, Silvia Roth, Norman Gercke, Ulrike Schötz, Ekkehard Dikomey, Rita Engenhart-Cabillic, Elisabeth Maurer, Detlef K Bartsch, Pietro Di Fazio

Abstract

Radiotherapy and immunotherapy have shown promising efficacy for the treatment of solid malignancies. Here, we aim to clarify the potential of a combined application of radiotherapy and programmed cell death-ligand 1 (PD-L1) monoclonal antibody atezolizumab in primary anaplastic thyroid cancer (ATC) cells. The radiation caused a significant reduction in cell proliferation, measured by luminescence, and of the number of colonies. The addition of atezolizumab caused a further reduction in cell proliferation of the irradiated ATC cells. However, the combined treatment did not cause either the exposure of the phosphatidylserine or the necrosis, assessed by luminescence/fluorescence. Additionally, a reduction in both uncleaved and cleaved forms of caspases 8 and 3 proteins was detectable in radiated cells. The DNA damage evidenced the over-expression of TP53, CDKN1A and CDKN1B transcripts detected by RT-qPCR and the increase in the protein level of P-γH2AX and the DNA repair deputed kinases. PD-L1 protein level increased in ATC cells after radiation. Radiotherapy caused the reduction in cell viability and an increase of PD-L1-expression, but not apoptotic cell death in ATC cells. The further combination with the immunotherapeutic atezolizumab could increase the efficacy of radiotherapy in terms of reduction in cell proliferation. Further analysis of the involvement of alternative cell death mechanisms is necessary to clarify their cell demise mechanism of action. Their efficacy represents a promising therapy for patients affected by ATC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。