Choline Regulates SOX4 through miR-129-5p and Modifies H3K27me3 in the Developing Cortex

胆碱通过 miR-129-5p 调节 SOX4 并修饰发育皮层中的 H3K27me3

阅读:4
作者:Evan M Paules, Jorge A Silva-Gomez, Walter B Friday, Steve H Zeisel, Isis Trujillo-Gonzalez

Abstract

Choline availability regulates neural progenitor cell proliferation and differentiation in the developing cerebral cortex. Here, we investigated the molecular mechanism underlying this process and demonstrated that choline regulates the transcription factor SOX4 in neural progenitor cells. Specifically, we found that low choline intake during neurogenesis reduces SOX4 protein levels, causing the downregulation of EZH2, a histone methyltransferase. Importantly, we demonstrate that low choline is not involved in SOX4 protein degradation rate and established that protein reduction is caused by aberrant expression of a microRNA (miR-129-5p). To confirm the role of miR-129-5p, we conducted gain-of-function and loss-of-function assays in neural progenitor cells and demonstrated that directly altering miR-129-5p levels could affect SOX4 protein levels. We also observed that the reduction in SOX4 and EZH2 led to decreased global levels of H3K27me3 in the developing cortex, contributing to reduced proliferation and precocious differentiation. For the first time, to our knowledge, we demonstrate that a nutrient, choline, regulates a master transcription factor and its downstream targets, providing a novel insight into the role of choline in brain development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。